Toward Understanding Catalyst Layer Deposition Processes and Distribution in Anodic Porous Transport Electrodes in Proton Exchange Membrane Water Electrolyzers

نویسندگان

چکیده

Finding the optimum structure in porous transport electrodes (PTEs) for proton exchange membrane water electrolyzer anodes is one of central current technological challenges. Both layer (PTL) and its interaction with catalyst are crucial finding this structure. In regard, manufacturing on top a PTL as structure-building process must be understood to find improved electrode structures. This work presents PTE tomography where ink directly processed PTL. The distribution anodic PTEs analyzed compared via X-ray microtomography cross-sectional imaging embedded samples. majority lies within first 100 µm PTE. Considering penetration depth membrane, maximum 60% effectively used. For time, voxel-based deposition model created that based simple assumptions process. fits very well previous tomographic analysis. future, will allow more profound insight into an important prerequisite future design PTEs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell

The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...

متن کامل

Anodic Aluminum Oxide Templated Channel Electrodes via Atomic Layer Deposition

Dye-sensitized solar cells (DSSCs) utilize high surface area metal oxide sintered particle networks to absorb molecular dyes and transport injected charge carriers. While this sintered particle architecture allows liquid electrolyte DSSCs to achieve efficiencies up to 11%, slow charge transport through the semiconductor network limits the amount of modification that can be made to the electroly...

متن کامل

Impact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode

Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...

متن کامل

New Method for the Deposition of Nickel Oxide in Porous Scaffolds for Electrodes in Solid Oxide Fuel Cells and Electrolyzers

A simple chemical bath deposition is used to coat a complex porous ceramic scaffold with a conformal Ni layer. The resulting composite is used as a solid oxide fuel cell electrode, and its electrochemical response is measured in humidified hydrogen. X-ray tomography is used to determine the microstructural characteristics of the uncoated and Ni-coated porous structure, which include the surface...

متن کامل

Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers

Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spray...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Energy Materials

سال: 2023

ISSN: ['1614-6832', '1614-6840']

DOI: https://doi.org/10.1002/aenm.202203636